93438 / ISOPLANAR SCHOTTKY TTL MEMORY 512×8-BIT PROGRAMMABLE READ ONLY MEMORY **DESCRIPTION** – The 93438 is a fully decoded 4096-bit field Programmable ROM organized 512 words by eight bits per word. The 93438 has uncommitted collector outputs. The device is enabled when $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are LOW and CS_3 and CS_4 are HiGH. The 93438 is supplied with all bits stored as logic "1"s and may be programmed to logic "0"s by following the field programming procedure. - FULL MIL AND COMMERCIAL RANGES - FIELD PROGRAMMABLE - ORGANIZATION 512 WORDS X 8 BITS - UNCOMMITTED COLLECTORS - FULLY DECODED ON-CHIP ADDRESS DECODER AND BUFFER - CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION - WIRED-OR CAPABILITY - STANDARD 24-PIN DUAL IN-LINE PACKAGE - NICHROME FUSE LINKS FOR HIGH RELIABILITY #### PIN NAMES $\begin{array}{ll} \underline{A_0} - \underline{A_8} & \text{Address Inputs} \\ \overline{CS_1}, \overline{CS_2}, CS_3, CS_4 & \text{Chip Select Inputs} \\ O_1 - O_8 & \text{Data Outputs} \end{array}$ # FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY • 93438 #### **ABSOLUTE MAXIMUM RATINGS** Storage Temperature Temperature (Ambient) Under Bias V_{CC} Input Voltage Current into Output Terminal -65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to 4.0 V #### **GUARANTEED OPERATING RANGES** Output Voltages | PART NUMBERS | | AMBIENT | | | |---------------|--------|---------|--------|-----------------| | PART NOWIBERS | MIN | TYP | MAX | TEMPERATURE | | 93438XC | 4.75 V | 5.0 V | 5.25 V | 0°C to +75°C | | 93438XM | 4.50 V | 5.0 V | 5.50 V | -55°C to +125°C | X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip, See Packaging Information Section for packages available on this product. **FUNCTIONAL DESCRIPTION** – The 93438 is a bipolar field Programmable Read Only Memory (PROM) organized 512 words by eight bits per word. Open collector outputs are provided on the 93438 for use in wired-OR systems. Chip Select follows the logic equation: $\overline{CS}_1 \cdot \overline{CS}_2 \cdot CS_3 \cdot CS_4 = CS$; i.e., if \overline{CS}_1 and \overline{CS}_2 are both active LOW and CS_3 and CS_4 are both active HIGH, all eight outputs are enabled; for any other condition all eight outputs are disabled. The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_0 through A_8 inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds. Programming (selectively opening nichrome fuse links) is accomplished by following the procedure in Chapter 6, page 6-14. DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise note. | | • | | LIMITS | | | | |-------------------|--|-----|-----------------|--------------|------------|--| | SYMBOL | CHARACTERISTIC | MIN | TYP
(Note 1) | MAX | UNITS | CONDITIONS | | ICEX | Output Leakage Current | | | 50 | μΑ | V _{CC} = MAX, V _{CEX} = 4.0 V, 0°C to +75°C
Address any HIGH Output | | JCEX | Output Leakage Current | | | 100 | μΑ | V _{CC} = MAX, V _{CEX} = 4.0 V, -55°C to +125°C
Address any HIGH Output | | v _{OL} | Output LOW Voltage | | 0.30 | 0.45 | V | V _{CC} = MIN, I _{OL} = 16 mA
A ₀ = +10.8 V, A ₁ - A ₈ = HIGH | | $\overline{v_IH}$ | Input HIGH Voltage | 2.0 | | | V | Guaranteed Input HIGH Voltage for All Inputs | | VIL | Input LOW Voltage | | | 0.8 | V | Guaranteed Input LOW Voltage for All Inputs | | ŀF | Input LOW Current IFA (Address Inputs) IFCS (Chip Select Inputs) | | -160
-160 | -250
-250 | μA
μA | V _{CC} = MAX, V _F = 0.45 V | | I _R | Input HIGH Current I _{RA} (Address Inputs) I _{RCS} (Chip Select Input) | | | 40
40 | μA
μA | V _{CC} = MAX, V _R = 2.4 V | | I _{CC} | Power Supply Current | | 130 | 175 | m A | V _{CC} = MAX, Outputs Open
Inputs Grounded and Chip Selected | | co | Output Capacitance | | 7 | | pF | V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz | | C _{IN} | Input Capacitance | | 4 | | рF | V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz | | v _C | Input Clamp Diode Voltage | | | -1.2 | V | V _{CC} = MIN, I _A = -18 mA | # FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY • 93438 | SYMBOL | CHARACTERISTIC | LIMITS | | | | | | |--------------------------------------|-------------------------------|--------|-----------------|----------|----------|--------------|--| | | | MIN | TYP
(Note 1) | MAX | UNITS | CONDITIONS | | | ^t AA-
^t AA+ | Address to Output Access Time | | 35
35 | 55
55 | ns
ns | See Figure 1 | | | tACS- | Chip Select Access Time | | 15
15 | 25
25 | ns
ns | | | AC CHARACTERISTICS: $T_A = -55$ °C to ± 125 °C, $V_{CC} = 5.0 \text{ V} \pm 10\%$ | SYMBOL CHARACTERIST | | LIMITS | | | Ĭ. | | | |---------------------|-------------------------------|--------|-----------------|----------|----------|--------------|--| | | CHARACTERISTIC | MIN | TYP
(Note 1) | MAX | UNITS | CONDITIONS | | | t _{AA} - | Address to Output Access Time | | 35
35 | 70
70 | ns
ns | See Figure 1 | | | tACS-
tACS+ | Chip Select Access Time | | 15
15 | 30
30 | ns
ns | | | Note (1): Typical values are at $V_{CC} = 5.0 \text{ V}$, +25°C and max loading. ## **AC WAVEFORM** ### AC TEST OUTPUT LOAD 15 mA Load Fig. 1