

Description

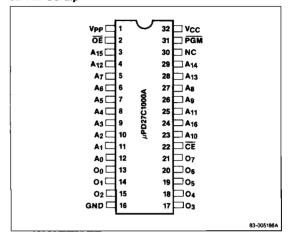
The µPD27C1000A is a 1,048,576-bit ultraviolet erasable and electrically programmable read-only memory fabricated with double-polysilicon CMOS technology for a substantial savings in both operating and standby power. The device is organized as 131,072 words by 8 bits and operates from a single +5-volt power supply.

The μ PD27C1000A has both page and single-location programming features, three-state outputs, and fully TTL-compatible inputs and outputs. It also has a program voltage (V_{PP}) of 12.5 volts and is available in a 32-pin cerdip with a quartz window.

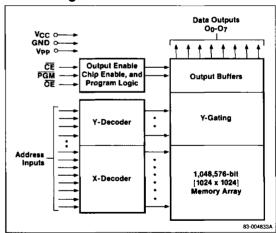
Features

- ☐ 131,072-word by 8-bit organization
- ☐ Ultraviolet erasable and electrically programmable
- ☐ High-speed programming capability
 - Page programming
 - Single byte programming
- ☐ Low power dissipation
 - 40 mA maximum (active)
 - 100 µA maximum (standby)
- ☐ TTL-compatible I/O for reading and programming
- ☐ Single +5-volt power supply
- ☐ Double-polysilicon CMOS technology
- ☐ 32-pin cerdip packaging
- ☐ Pinout compatibility with 28-pin, mask-programmable µPD23C1000s

Ordering Information


Part Number	Access Time (max)	Package
μPD27C10i)0AD-12	120 ns	32-pin cerdip with a
D-15	150 ns	quartz window
D-20	200 ns	

Pin Identification


Symbol	Function	
A ₀ -A ₁₆	Address inputs	
0 ₀ -0 ₇	Data outputs	
	Chip enable	
ŌE	Output enable	
PGM	Program	
GND	Ground	
v _{cc}	+5-volt power supply	
V _{PP}	Program voltage	
NC	No connection	

Pin Configuration

32-Pin Cerdip

Block Diagram

Absolute Maximum Ratings

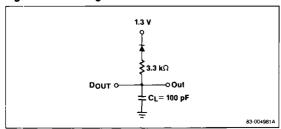
Power supply voltage, V _{CC}	-0.6 to +7.0 V
Input voltage, V _{IN}	-0.6 to +7.0 V
Input voltage, A ₉	-0.6 to +13.5 V
Output voltage, V _{OUT}	-0.6 to +7.0 V
Operating temperature, T _{OPR}	-10 to +80°C
Storage temperature, T _{STG}	−65 to +125°C
Program voltage, V _{PP}	-0.6 to +13.5 V

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

TA =25°C; f = 1 MHz

	Limits					
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	CiN			14	pF	V _{IN} = 0 V
Output capacitance	C _{OUT}			16	рF	V _{0UT} = 0 V


Truth Table

Mode	Œ	ŌĒ	PGM (Note 2)	V _{PP}	VCC	Outputs
Read	VIL	VIL	V _{IH}	+5.0 V	+5.0 V	D _{OUT}
Output disable	V _{IL}	ViH	Х	+5.0 V	+5.0 V	High-Z
Standby	VIH	Х	Х	+5.0 V	+5.0 V	High-Z
Page data latch	VIH	VIL	V _{IH}	+12.5 V	+6.5 V	D _{IN}
Page program	V _{IH}	V _{IH}	V _{IL}	+12.5 V	+6.5 V	High-Z
Program verify	VIL	VIL	V _{IH}	+12.5 V	+6.5 V	D _{OUT}
Byte program	VIL	V _{iH}	V _{IL}	+12.5 V	+6.5 V	D _{IN}
Program inhibit	Х	VIL	VIL	+12.5 V	+6.5 V	High-Z
	X	V _{IH}	V _{IH}			

Notes:

- (1) ' X" can be either V_{IL} or V_{1H} .
- (2) In read operation, PGM must be set to V_{IH} at all times or switched from V_{IL} to V_{IH} at least 2 µs before OE or CE becomes V_{IH}.

Figure 1. Loading Conditions Test Circuit

DC Characteristics

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; V_{CC} = +5.0 \text{ V} \pm 10\%; V_{PP} = V_{CC} \pm 0.6$

	Limits								
Parameter	Symbol	Min	Typ Max	Unit	Test Conditions				
Read, Output	Disable,	and	Standby	Mode	8				
Output voltage,	V _{DH1}	2.4		٧	$I_{OH} = -400 \mu\text{A}$				
high	V _{OH2}	V _{CC} 0.7		٧	$I_{0H} = -100 \mu\text{A}$				
Output voltage, low	V _{OL}		0.45	V	$I_{0L} = 2.1 \text{ mA}$				
Input voltage, high	V _{IH}	2.0	V _{CC} + 0.3	3 V	·				
Input voltage, low	V _{IL}	-0.3	0.8	ν					
Output leakage current	lΓO	-10	10	μA	$ \overline{OE} = V_{IH}; $ $ V_{OUT} = 0 \text{ V to} $ $ V_{CC} $				
Input leakage current	1[[_ -10	10	μΑ	$V_{IN} = 0 V to V_{CC}$				
Operating supply current	I _{CCA1}		15	mA	$\overline{CE} = V_{IL};$ $V_{IN} = V_{IH}$				
	I _{CCA2}		40	mA	$ f = 8.4 \text{ MHz}; $ $ t_{ACC} = 120 \text{ ns}; $ $ l_{OUT} = 0 \text{ mA} $				
			30	mA	f = 6.7 MHz; $t_{ACC} = 150 \text{ ns};$ $t_{OUT} = 0 \text{ mA}$				
			25	mA	$\begin{split} f &= 5 \text{ MHz;} \\ t_{ACC} &= 200 \text{ ns;} \\ t_{OUT} &= 0 \text{ mA} \end{split}$				
Standby supply	I _{CCS1}		1	mΑ	CE = V _{IH}				
current	I _{CCS2}		1 100	μΑ	$\overline{CE} = V_{CC}; V_{IN}$ = 0 V to V_{CC}				
Program voltage current	Ірр		1 100	μΑ	$V_{PP} = V_{CC}$				
All Program I T _A = +25 ±5 °C;		5 ±0.2	25 V; V _{PP} ≈ -	⊦12.5 ±	±0.3 V				
Output voltage, high	V _{OH}	2.4		٧	$t_{OH} = -400 \mu\text{A}$				
Output voltage, low	V _{OL}		0.45	٧	$I_{OL} = 2.1 \text{ mA}$				
Input voltage, high	VIH	2.4	V _{CC} + 0.3	3 V					
Input voltage, low	VIL	-0.3	0.8	٧					
Input leakage current	ILI	-10	10	μΑ	$V_{IN} = V_{IL}$ or V_{IH}				
Operating supply current	lcc		30	mA					
Program voltage current	Ірр		50	mA	CE = PGM = V _{IL}				

AC Characteristics

 $T_A = 0 \text{ tc } +70 \text{ °C}; V_{CC} = +5.0 \text{ V} \pm 10\%; V_{PP} = V_{CC}$

Parameter		Limits							
		μP027C1000A-12		μPD27C1000A-15		μP027C1000A-20			
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Read and Standby Modes									
Address to output delay	tacc		120		150		200	ns	CE = OE = V _{IL}
CE to output delay	t _{CE}		120		150		200	ns	0E = V _{IL}
OE to output delay	toE		70		70		75	ns	CE = V _{IL}
OE or CE nigh to data output float delay	t _{DF}	0	50	0	50	0	60	ns	$\overline{CE} = V_{IL} \text{ or } \overline{OE} = V_{II}$
Address to output hold time	toH	0		0		0		ns	$\overline{CE} = \overline{OE} = V_{IL}$

Notes:

 See figure 1 for output load; input rise and fall times ≤ 20 ns; input pulse levels = 0.45 V and 2.4 V; input and output timing measurement levels = 0.8 V and 2.0 V.

AC Characteristics (cont)

 $T_A = +25 \pm 5$ °C; $V_{CC} = +6.5 \pm 0.25$ V; $V_{PP} = +12.5 \pm 0.3$ V

		Limits				Test Conditions
Parameter	Symbol	Min	Тур	Max	Unit	(Note 1)
Page Data La and Program				Prog	gram	Verify,
Address setup time	tas	2			μS	
Data setup time	t _{DS}	2			μS	
Address hold time	t _{AH}	2			μS	
	tAHL	2			μS	
	t _{AHV}	0			μS	
Data hold time	t _{DH}	2			μS	
Output enable to output float delay	t _{DF}	0		130	ns	
V _{PP} setup time	t _{VPS}	2			μS	
Program pulse width	tpw	0.095	0.1	0.105	ms	
V _{CC} setup time	tvcs	2			μS	
OE setup time	t _{OES}	2			μS	
0E hold time	t _{OEH}	2			μS	
CE hold time	[†] CEH	2			μS	
OE pulse width during data latch	t _{LW}	1			μS	
PGM setup time	tpgms	2			μS	
CE setup time	t _{CES}	2			μS	
Data valid from OE	t _{OE}			150	ns	

					Test Cenditions	
Parameter	Symbol	Min	Тур	Max	Unit	(Note 1)
Byte Program	nming N	lode				
Address setup time	t _{AS}	2			μS	
OE setup time	toes	2			μS	
Data setup time	t _{DS}	2			μS	
Address hold time	^t AH	2			μS	
Data hold time	[‡] DH	2			μS	
OE to output float time	t _{DF}	0		130	ns	
V _{PP} setup time	typs	2			μS	
V _{CC} setup time	tvcs	2			μS	
Initial program pulse width	tpw	0.095	0.1	0.105	ms	
CE setup time	t _{CES}	2			μS	
OE to output delay	t _{OE}			150	ns	

Notes:

 Input pulse levels = 0.45 V to 2.4 V; input and output timing reference levels = 0.8 V and 2.0 V; input rise and fall times ≤ 20 ns. See figure 1 for output load.

Programming Operation

Begir programming by erasing all data; this sets all bits at a high logic level (1). The μ PD27C1000A is originally shipped in this condition. To enter data, program a low-level (0) TTL signal into the chosen location.

Address the first byte or page location and apply valid data at the eight output pins. Raise V_{CC} to $+6.5\pm0.25$ V; then raise V_{PP} to $+12.5\pm0.3$ V.

Byte Programming

For byte programming, \overline{CE} should be set at 0 and \overline{OE} at 1 to start programming at the initial address. Apply a 0.1-ms program pulse to \overline{PGM} as shown in the byte programming portion of the timing waveforms. Set \overline{OE} to 0 to verify the eight bits prior to making a program/no program decision. If the byte is not programmed, apply another 0.1-ms pulse to \overline{PGM} , up to a maximum of 10 times, and input the next address. If the bits are not programmed in 10 tries, reject the device as a program failure.

After all addresses are programmed, lower both V_{CC} and V_{PP} to +5.0 V $\pm 10\%$ and verify all data again.

Page Programming

For page programming, \overline{CE} and \overline{PGM} should be set to 1. \overline{OE} pulses low four times to latch the addressed 4-byte, one-page data. Subsequently, \overline{CE} and \overline{OE} should be set to a high level and a 0.1-ms program pulse applied to \overline{PGM} as shown in the page programming portion of the timing waveforms. Verify the data prior to making a program/no program decision. If all four bytes of page data are not programmed, apply another 0.1-ms pulse to \overline{PGM} , up to a maximum of 10 times, and input the next page address. If the page is not programmed in 10 tries, reject the device as a program failure.

After all addresses are programmed, lower both V_{CC} and V_{PP} to ± 5.0 V $\pm 10\%$ and verify all data again.

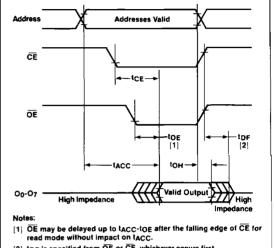
Program Inhibit

Use the programming inhibit option to program multiple μ PD27C1000As connected in parallel. All like inputs except \overline{PGM} and \overline{OE} may be common. Program individual devices by applying a low-level TTL pulse to the \overline{PGM} pin of the device to be programmed. Applying a high-level signal to the \overline{PGM} pins of the other devices prevents them from being programmed.

Program Verification

To verify that the device is correctly programmed, normal read operation can be used with a logic level 1 applied to the PGM pin and a logic level 0 applied to the CE and OE pins of the device to be verified. A logic level 1 should be applied to the CE and OE pins of all other devices.

Erasure


Erase data on the μ PD27C1000A by exposing it to light with a wavelength shorter than 400 nm. Since exposure to direct sunlight or room-level fluorescent light could also erase the data, mask the window to prevent unintentional erasure by ultraviolet rays. Opaque labels are supplied with every device.

Data s typically erased by ultraviolet rays with a wavelength of 254 nm. A minimum integrated dose of 15 W-sec/cm² (ultraviolet lighting intensity multiplied by exposure time) is required to completely erase written data.

An ultraviolet lamp rated at 12,000 µW/cm2 takes approximately 15 to 20 minutes to complete erasure. Place the µPD27C1000A within 2.5 cm of the lamp tubes and remove any filter on the lamp.

Timing Waveforms

Read Cycle

[2] 1DF is specified from $\overline{\text{OE}}$ or $\overline{\text{CE}}$, whichever occurs first.

83-004835A

Timing Waveforms (cont)

Page Programming

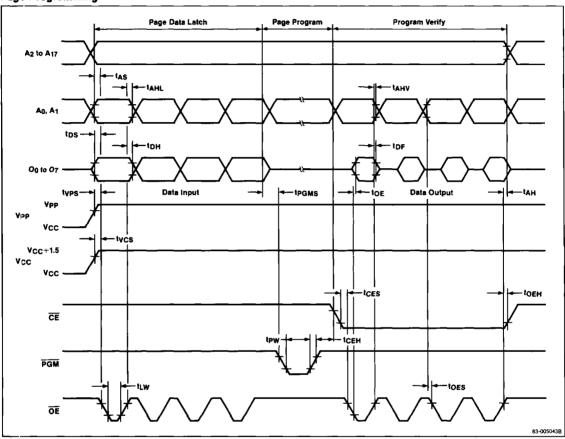
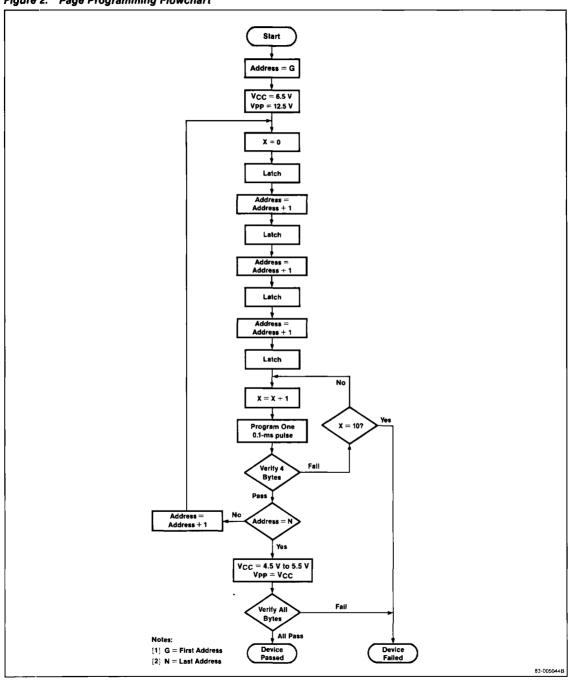



Figure 2. Page Programming Flowchart

Timing Waveforms (cont)

Byte Programming

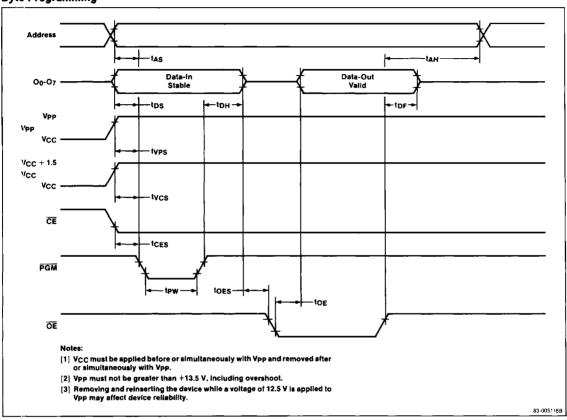
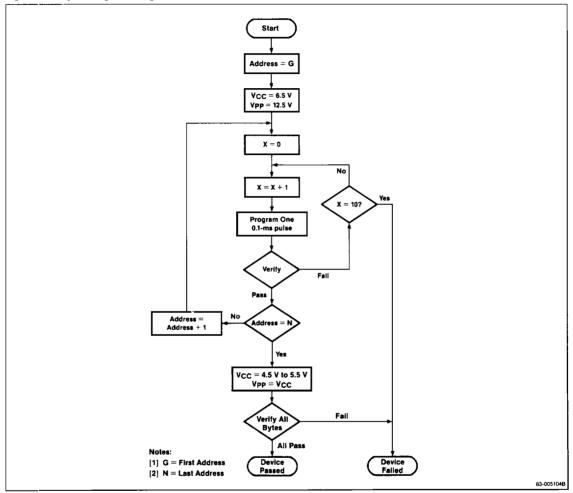



Figure 3. Byte Programming Flowchart

